Plant Genomics and Plant-Microbe Interaction Group

Plant Genomics and Plant-Microbe Interaction Group - Detailed

Last modified: 03. November 2022

Research Projects

1. Symbiotic nitrogen fixation and legume genomics

Legumes compose the third largest family of flowering plants. Medicago truncatula and other leguminous plants are able to establish nitrogen-fixing symbiotic associations with soil bacteria belonging to the genus rhizobia. The legume-rhizobial symbiosis accounts for a significant proportion of biological nitrogen fixation worldwide. Symbiotic nitrogen fixation takes place in specialized organs termed nodules, which are initiated within a specific symbiotic sensitive region of the root. In nodule cells, bacteria are encompassed by plant derived peribacteroid membranes and these cytoplasmic structures containing rhizobia are referred as symbiosomes. In the symbiosomes, the bacteria undergo morphological changes and metabolic differentiation to transform into their symbiotic form termed bacteroids. The symbiosome is the site of nitrogen fixation and functions in nutrient and signal exchange between the two symbionts. Our research focuses on the identification, molecular and biochemical characterization of plant components essential in the later stages of nodule development, rhizobial invasion and symbiosome development and function. Bacterial and plant symbiotic mutants provide excellent tools to dissect the interaction between the two partners and to analyze the development of the symbiotic nodule. The identification of key components in bacterial release, endocytosis and symbiosome development will help us to better understand the symbiotic interaction.

We are currently characterizing and analyzing M. truncatula mutants defective in the later stages of nodule organogenesis or impaired in proper functioning of the symbiotic nodules. In order to assess the actual function of these genes (Fix genes) and characterize their gene products, the Fix genes will be identified by positional cloning and utilizing the genomic resources of M. truncatula.
 

Main scientific achievements:

  • Kovács, S, Fodor, L, Domonkos, Á, Ayaydin, F, Laczi, K, Rákhely, G and Kaló P*. Amino Acid Polymorphisms in the VHIID Conserved Motif of Nodulation Signaling Pathways 2 Distinctly Modulate Symbiotic Signaling and Nodule Morphogenesis in Medicago truncatula. Plant Sci. 2021 12:709857. https://doi.org/10.3389/fpls.2021.709857
  • Walton, JH, Kontra-Kovats, G, Green, RT, Domonkos, A, Horvath, B, Brear, EM, Franceschetti, M, Kaló, P, Balk, J*. The Medicago truncatula Vacuolar iron Transporter-Like proteins VTL4 and VTL8 deliver iron to symbiotic bacteria at differentstages of the infection process. New Phytologist 2020 228: 651–666. https://doi.org/10.1111/nph.16735
  • SósHegedűs, A, Domonkos, Á, Tóth, T, Gyula, P, Kaló, P*, Szittya, G*. Suppression of NB‐LRR Genes by miRNAs Promotes Nitrogen‐fixing Nodule Development in Medicago truncatula. Plant Cell and Environment 2020 43(5): 1117-1129. https://doi.org/10.1111/pce.13698
  • Rajlakshmi Das, D, Horváth, B, Kundu, A, Kaló, P, DasGupta, M*. Functional conservation of CYCLOPS in crack entry legume Arachis hypogaea. Plant Science 2019 281: 232–241. https://doi.org/10.1016/j.plantsci.2018.12.003
  • Ellis, N, Hattori, C, Cheema, J, Donarski, J, Charlton, A, Dickinson, M, Venditti, G, Kalo, P, Szabo, Z, Kiss, GB, Domoney, C NMR Metabolomics Defining Genetic Variation in Pea Seed Metabolites. Frontiers in Plant Science 2018 9:1022 DOI: 10.3389/fpls.2018.01022
  • Domonkos, Á, Kovacs, S, Gombar, A, Kiss, E, Horvath, B, Kovats, G, Farkas, A, Toth, M, Ayaydin, F, Boka, K, Fodor, L, Ratet, P, Kereszt, A, Endre, G, Kaló, P*. NAD1 controls defense-like responses in Medicago truncatula symbiotic nitrogen fixing nodules following rhizobial colonization in a BacA-independent manner. Genes 2017 8:387. doi:3390/genes8120387
  • Wang, Q, Yanga, S, Liu, J, Terecskei, K, Ábrahám, E, Gombár, A, Domonkos, Á, Szűcs, A, Körmöczi, P, Wang, T, Fodor, L, Mao, L, Fei, Z, Kondorosi, É, Kaló, P, Kereszt, A and Zhu, H*. Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. Proc Nat Acad Sci. 2017 114: 6854-6859. https://doi.org/10.1073/pnas.1700715114
  • Horváth, B, Domonkos, Á, Kereszt, A, Szűcs, A, Ábrahám, E, Ayaydin, F, Bóka, K, Chen, Y, Chen, R, Murray, JD, Udvardi, MK, Kondorosi, É, Kaló, P*. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 Proc Nat Acad Sci. 2015 112:15232-15237 https://doi.org/10.1073/pnas.1500777112
  • Domonkos, A, Horvath, B, Marsh, JF, Halasz, G, Ayaydin, F,Oldroyd, GED, Kalo, P*. The identification of novel loci required for appropriate nodule development in Medicago truncatula. BMC Plant Biology 2013 13: 157 https://doi.org/10.1186/1471-2229-13-157
  • Horváth, B, Yeun, LH, Domonkos, Á, Halász, G, Gobbato, E, Ayaydin, F, Miró, K, Hirsch, S, Sun, J, Tadege, M, Ratet, P, Mysore, K, Ané, JM, Oldroyd, GED and Kaló, P*. Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol Plant-Microbe Interaction 2011 24:1345-1358. https://doi.org/10.1094/MPMI-01-11-0015


Main research grants:

  1. The identification and analysis of genes controlled by the regulator of symbiosome differentiation (RSD) transcription factor during Medicago truncatula nodule development. (ICGEB CRP/HUN17-03) (témavezető: Dr. Kaló Péter, 2018-2022)
  1. A nitrogénkötő baktériumok differenciációjához létfontosságú gümőspecifikus cisztein gazdag (NCR) peptideket kódoló Medicago truncatula gének funkcionális vizsgálata. (OTKA K-119652) (témavezető: Dr. Kaló Péter, 2016-2021)
  1. Egyes Medicago truncatula gümő-specifikus cisztein-gazdag (NCR) peptideket kódoló gének esszenciális funkciójának vizsgálata a rhizobium terminális bakteroid differenciációjában. (OTKA PD- 121110) (témavezető: Dr. Horváth Beatrix, 2019-2022)
  1. Haszonmaximalizálás szimbiózisban? Gene for gene kölcsönhatások a Medicago-Sinorhizobium kapcsolatokban. (OTKA K-120300) (témavezető: Dr. Domonkos Ágota, 2016-2021)


Group members


 

Ágota Domonkos, Senior research associate
MATE, IGB, Department of Microbiology and Applied Biotechnology, Plant Genomics and Plant-microbe Interaction Group, 2021-
mtmt

M.Sc.: Molecular Biology and Biotechnology, József Attila University, 1992.
PhD: Biology, Szeged University, 2001.

Phone: +36-28/430-494 / 4103
Room: MATE GBI Gödöllő, Szent-Györgyi A. st. 4., 2. floor, 205
E-mail: Domonkos.Agota@uni-mate.hu


 

Beatrix Horváth, Senior research associate
MATE, IGB, Department of Microbiology and Applied Biotechnology, Plant Genomics and Plant-microbe Interaction Group, 2021-
mtmt

M.Sc.: Biology Teacher, Pécs University, 2004.
PhD: Classical and Molecular Genetics, ELTE University, 2014

Phone: +36-28/430-494 / 4103
Room: MATE GBI Gödöllő, Szent-Györgyi A. st. 4., 2. floor, 205
E-mail: Horvath.Beatrix@uni-mate.hu


 

Elmira Mohammadi Eghbash, PhD student
MATE, IGB, Department of Microbiology and Applied Biotechnology, Plant Genomics and Plant-microbe Interaction Group,, 2021-

M.Sc.: Agricultural engineering- Agricultural biotechnology, University of Zanjan, Iran
PhD school: Doctoral School of Plant Science, Hungarian University of Agriculture and Life Sciences, 2021-2025
Supervisor: Dr. Péter Kaló

Phone: +36-28/430-494 / 4103
Room: MATE GBI Gödöllő, Szent-Györgyi A. st. 4., 2. floor, 205
E-mail: elmira.mohammadi92@gmail.com


 

Tolnainé Csákány Hajnalka, laboratory assistant
MATE, IGB, Department of Microbiology and Applied Biotechnology, Plant Genomics and Plant-microbe Interaction Group, 2021-

Phone: +36-28/430-494 / 2103
Iroda: MATE GBI Gödöllő, Szent-Györgyi A. st. 4., 2. floor, 204
E-mail: Tolnaine.Csakany.Hajnalka@uni-mate.hu

Alumni:
  • Farheen Saifi (2017.2022)
  • Barnabás J. Biró (2017-2021)
  • Güngör, Berivan (2017-2021)
  • Mónika T. Tóth (2016-2020)
  • Anikó Gombár (2016-2019)
  • Gyöngyi Z. Kováts (2016-2019)
  • Lili Fodor (2014-2017)